Solving Trace Equations Using Lexicographical Normal Forms
نویسندگان
چکیده
Very recently, the second author showed that the question whether an equation over a trace monoid has a solution or not is decid-able 11,12]. In the original proof this question is reduced to the solv-ability of word equations with constraints, by induction on the size of the commutation relation. In the present paper we give another proof of this result using lexicographical normal forms. Our method is a direct reduction of a trace equation system to a word equation system with regular constraints, using a new result on lexicographical normal forms.
منابع مشابه
Algorithmics of Posets Generated by Words Over Partially Commutative Alphabets (Extended)
It is natural to relate partially ordered sets (posets in short) and classes of equivalent words over partially commutative alphabets. Their common graphical representation are Hasse diagrams. We investigate this relation in detail and propose an efficient online algorithm that decompresses a concurrent word to its Hasse diagram. The lexicographically minimal representative of a trace (an equiv...
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملA Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations
This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...
متن کاملTrace Rewriting: Computing Normal Forms in Time O(n log n)
We develop an O(n log n) algorithm for computing normal forms in the case of nite weight-reducing trace rewriting systems with connected left-hand sides. The time complexity of previously known algorithms solving this problem has been square time in the worst-case.
متن کامل